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Abstract—A laminar flow with fully-developed velocity profile is assumed to exist in a circular pipe or

rectangular channel with constant wall temperature. The Lévéque solution is the zero-order term in a

power series expansion of temperature for the high Graetz number (thermal entry) flow of a Newtonian

fluid. The Lévéque solution is extended here in the sense that analytical expressions for the zero-, first-

and second-order terms in the power series expansion of temperature are derived for the flow of a power
law fluid. The effect of heat generation by viscous dissipation is included.

NOMENCLATURE

Brinkman number;
specific heat capacity;

arbitrary constants;

exponential function;

Graetz number;

modified Graetz number;
channel half-width;

mean heat-transfer coefficient;
thermal conductivity ;

pipe or channel length;
viscosity shear-rate exponent ;

M(,,), Kummer function;
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Nusselt number;

pressure drop;

Péclet number;
volumetric flow rate;
radial coordinate in pipe;
pipe radius;
(T.-T)/IT.-T,;
temperature;

inlet fluid temperature;
wall temperature ;

axial velocity;

Kummer function;
channel width;

axial coordinate in channel;
cross-channel coordinate ;
axial coordinate in pipe.

Greek symbols

o,

B,

coefficients in expressions for 8, and 6,;

gamma function;

dimensionless axial coordinate in pipe;
dimensionless cross-channel coordinate;
dimensionless temperature ;

0, i-th order term in power series expansion of
8
a, first derivative of 6, with respect to ¢ ;

Y, second derivative of §; with respect to ¢ ;
i, viscosity ;

u*, unit shear-rate viscosity ;

vl’} components of 6, ;

V2,

g, dimensionless axial coordinate in channel;

0, density;

o, dimensionless radial coordinate in pipe:

o, transformed dimensionless cross-duct
coordinate in pipe or channel;

pa dummy variable;

v, transformed dimensionless axial coordinate
in pipe or channel.

1. INTRODUCTION

THERE are many practical situations in which a flow,
though fully-developed from the point of view of the
velocity field, is undeveloped from the point of view
of the temperature field: for example, a molten
polymer flow generally has a fully-developed velocity
field because its viscosity is high and an undeveloped
temperature field because its thermal conductivity is
low. Analysis of such a flow in the simplest possible
case comprises the Graetz—Nusselt problem, which is
to determine the developing temperature field in a
laminar flow of an incompressible Newtonian fluid
with fully-developed velocity profile in a duct
(generally, a circular pipe or rectangular channel).
The inlet fluid temperature is different from the
constant duct wall temperature, and heat generation
by viscous dissipation is ignored. All fluid properties
are assumed to be constant.

The Graetz-Nusselt problem may be generalized
(to describe a molten polymer flow more accurately,
for example) by (i) considering a power law (shear-
rate dependent viscosity) fluid, of which the New-
tonian fluid is a special type, and (ii) accounting for
heat generation by viscous dissipation.
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Analytical solutions of this (what will henceforth
be called) generalized Graetz—Nusselt problem can
be obtained relatively easily for flows in ducts of
simple geometries (see, for example, Bird [1] and
Toor [2] for flows in circular pipes). The analytical
solution for the temperature field is obtained by the
method of separation of variables and takes the form
of an infinite sum of eigenfunctions. For long ducts,
that is for low Graetz number flows, the infinite sum
converges rapidly, so that accurate estimates of the
temperature field can be readily obtained. For short
ducts, that is for high Graetz number flows, however,
the infinite sum does not converge at all rapidly and,
in order to obtain accurate estimates of the tempera-
ture field, an alternative form of the solution must be
obtained. It is clear that, for high Graetz number
flows, the temperature field will vary significantly
from the inlet fluid temperature only in a region
close to the duct wall and that a boundary layer
analysis is, therefore, appropriate. Such an analysis
yields, as a first approximation, the analytical
Lévéque solution (see, for example, Lévéque [3] and
Bird, Armstrong and Hassager [4] for Lévéque
solutions of the Graetz—-Nusselt and generalized
Graetz—Nusselt problems, respectively, for flows in
circular pipes). The Lévéque solution of the
Graetz—-Nusselt problem has been extended analyti-
cally by Newman [5] up to and including second-
order terms in a power series expansion of tempera-
ture in inverse one-third powers of local Graetz
number for flows in circular pipes. The Lévéque
solution is the zero-order term in this power series
expansion. Mercer [6] has obtained analytically/
numerically the analogous solution up to and
including third-order terms for flows in rectangular
channels (approximated by flows between parallel
plates). The Lévéque solution of the generalized
Graetz—Nusselt problem has been extended numeri-
cally by Shih and Tsou [7] up to and including
fourth-order terms for flows in circular pipes. Here,
the Lévéque solution of the generalized
Graetz—Nusselt problem is extended analytically up
to and including second-order terms for flows both
in circular pipes and in rectangular channels (the
latter being approximated by flows between parallel
plates). The analysis is described in detail for flows in
circular pipes in Section 2. The very similar analysis
for flows in rectangular channels is described
somewhat more briefly in Section 3. Both analyses
are discussed in Section 4.

2. FLOW IN A PIPE

Let r denote the radial coordinate and z the axial
coordinate in a circular pipe of radius R and length
L. Let u denote the axial velocity, Q the axial
volumetric flow rate, P the pressure drop, p the
viscosity, u* the unit shear-rate viscosity and m the
viscosity  shear-rate  exponent  (such  that
= p¥|du/dr]*™ 1 m =1 corresponds to a New-
tanian Awid\ Qdssume that thp ratic T QR is
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easy to show that

Rm+1_.rm+l P m
u= 1)
(m+1) 2u*L
and hence that
Q _n_Rm+3 P m (2)
T (m+3) \2u*L

(see, for example, Middleman [8]). Then, if p denotes
the fluid density, ¢ its specific heat capacity, k its
thermal conductivity and T its temperature, the
energy equation is

T ké [ oT + du\? 3)
U— =—-— —
pe 0z rér "o # dr
assuming that the Péclet number defined by
Pe = 2pcQ/nkR 4)

is so large that axial conduction can be neglected.
Let T, denote the inlet fluid temperature and T,
denote the constant pipe wall temperature. Then the
boundary conditions on T are

T=T atz=0

eT

—=0 atr=0 (5)
cr

T=T, atr=R.

Define the Graetz number (which may be interpreted
as a ratio of heat convected along the flow to heat
conducted across it)
2R 4
Gz=— Pe= peQ
L kL

(6)

and the Brinkman number (which may be in-
terpreted as a ratio of heat generated by viscous
dissipation to heat conducted between the inlet fluid
flow and the pipe wall)

_ AMQ/2RRY) 102 [2m 4 3]

Br= 7
"= T ORI -T,) 3 g

Define dimensionless variables

o=r/R{=z/L0=T-THT-T,) (8

and a modified Graetz number

Gz* = Gz(m+3)/4m+1). 9)
Then (3) and (5) become
1 0 o0
z*(l—a'"”)i?=——<a—>+3r a.m+1 (10)
0 odo\ Odo
and
0=1 mc=ol
o0
—=0 ato=0 (11)
oo
6=0 ato=1

respectively. Solutions of (10) and (11) are sought
which are valid for large Gz (and hence Gz*).
Significant variations in 6 are then confined to a
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Lévéque solutions for flows of power law fluids

Motivated by the form of the Lévéque solution,
transform the independent variables { and ¢ by
putting

_ 26z4\'P 90\
d):(l—a)( 9{) ,¢=<2G2*> L)

Then (10) and (11

) become

. 3 00
[1— (1~ ¢y) ﬂa—¢wZP( bt waﬁ
100 (1—-¢y) 0% ‘2
= — + Br(1 —¢y)" 13
¢6¢+ 7 6¢2+ (1—oy) (13)
and
=0 atd):O} (14)
0=1 as¢p >

respectively. The boundary condition 60/0c = 0 at
=0 is irrelevant in a boundary layer
approximation.

Expand 6 in a power series in i

0(@, ¥) = 0o(d) +¥0,($) +¥?0,(d) + (15)
Clearly, (15) only converges for y < 1, that is for
Gz > 18(m+1)/(m+3). Note that 6,(¢) is precisely
the dimensionless form of the Lévéque solution for 6
(see, for example, Bird, Armstrong and Hassager [4])
and is valid for small yy and hence large Gz
Substitute (15) into (13) and (14), and equate
coefficients of like powers of i to obtain

i
6g+3<’"—; >¢29;, -0

| i
9”+3<m; >¢20; <m+ >¢>61

(16)

3m (m+1 ,
:[1+7<T>¢3]90 (17)
9”+3<m+1>¢ 0,_6<m+1>¢)02
B 3m r_nLl 3 ,_3m m+1
LT T 05 e
m m+1\ L]
+P—5w—n@7ﬁ¢%f- (18)

and 'so on (where
d?/d¢?) and
90(0)=61(0)=82(0)=---= . } (19)
Oo(c0)=1,0,(0) =0,(c0)=...=0.
Note that 6, and 8, are independent of Br. Thus, for
low enough , that is for high enough Gz, heat

generation by viscous dissipation is unimportant
(unless, of course, T; = T,,).

" denotes d/d¢ and ” denotes

Zero-order solution
Integration of (16) is quite straightforward and

HM.T. 22/10—6
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yields, on substitution of the boundary conditions
(19)

<m+l 3

90=f
0

where I'( ) denotes the gamma function (see Davis

oD

2

e~ 7 dy / T(4/3) (20)

First-order solution
Assume, by analogy with the Newtonian (m = 1)
result of Newman [5], that
O‘d’z _ Tj.l 3
1= ¢ ( 2 )¢
- T(43)
B |7

@) ey

2D

-

where o and B are constants yet to be determined.
The boundary conditions (19) require only that «
and f are finite. Substitute (21) into (17), and equate
coefficients of like powers of ¢ to yield

m <m+1* 13
10\ 2 >

(22)
plm
2710
Second-order solution
Let
8, =v,+Brv, (23)

v, satisfies (18) with 6, = v, and Br = 0. Assume, by
analogy with the Newtonian (m = 1) result of
Newman [ 5], that

o ad)Z 0
S ZYE N B

() e

(B+7¢°+5¢°) _ ("’“)(b;
| ool

T'(4/3)
4/3) J‘ 2/3
(24)

where o to ¢ are constants yet to be determined. It is
easy to show that

f {1- 2/3 ( )(b‘ - /)‘dx

4 ("N (42 (m+lN
(5 e () e

where U(,,) is a Kummer function (see Slater [10]).
The boundary conditions (19) require that « to ¢ are
finite and that

oG]

e 7 dy

(26a)
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Substitute {24) into (18) using (235), and equate
coefficients of like powers of ¢ to yield

a_1+m
T 420
1 /m+1\"%3
S 35+ 10m—m?
g 840( 2 ) 35+ 10m —m)

m [(m+ 1\ (26b)
y=22—0<~—5_—> (Bt —m)

5_3m2 m+1\*3
2004\ 2

v, satisfies (18) with 8, =v,, 6;=0,=0 and
Br = 1. The solution of the homogeneous ordinary
differential equation (18) with 6,=v, and
0o =06, =Br=20is

m+1.
vy = (T)él[ﬁw(g;(%l)és)
42 1
+C2U<§, 3‘5 (T;—>¢3)} (27)

{see Slater [10]) where M({(,.} and U{,,) are Kummer
functions, and ¢, and ¢, are constants. The solution
of the non-homogeneous ordinary differential equa-
tion is found by the method of variation of
parameters (see Jeffreys and Jeffreys [11]). In-
corporate the boundary conditions (19) to yield
finally

m+ 1
V= e_( 2 /(b

42
X[M(S’E

r4/3) U(I 2
3

(ZI)U{WCE&Z;)

3N 2

3
T e 33 3

e
SCERu e

3
A(4/3)é 12 (m+1
e m 1\ M(S’S’(T)¢3>H‘

”(3)(“3‘)

(28)

Nusselt number

Let H denote the mean heat-transfer coefficient for
heat transfer from the fluid to the pipe wall based on
the inlet temperature difference, so that

L C’AT i
2rRLH|T,~ T, = —2rRk J e dz. (29)
0 8r fr=R
Define the mean Nusselt number
Nu = 2HR/k. (30)
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Then it follows that
{6(m+3)]'"? , m
Nu=§| - Gz'P =1+
u S[ ITE3) *3

_i[r{5/3}]2 35+ 10m —m?)
560 [T(4/3)]® [6(m+3)]73

-1/3

9L(5/3) Br Gom1
2T@/3) [6(m+3)]73
+0(Gz"3) (31)
where I'(4/3) = 0.8929795 a2
and I's/3) = 0.9027453}
{see Davis [9]), and
S =(T,-T) T~ Tl {33)

Checks

The results for 8, and §; (i = 0,1,2) and Nu agree
precisely with the analytical (m = 1, Br = 0) results
of Newman [5]. The results for §; and 6; (i = 0,1,2)
agree well with the numerical (arbitrary m and Br)
results of Shih and Tsou [7] as, for example, Table 1
shows.

3. FLOW IN A CHANNEL

Let y denote the cross-channel coordinate and x
the axial coordinate in a rectangular channel of half-
height h, width w and length L. Assume that the
ratio w/2h is so large that flow in the channel can be
closely approximated by flow between two parallel
flat plates, and that the ratio L/2h is so large that the
velocity field is fully-developed. Symmetry means
that attention can be confined to the region
0 < y < h. Then it is easy to show that

m+1__ . m+1 m
LA (34)
(m+1} u*L
and hence that
Jwhmt2 [ P A"
= [ o 35
o=ty ez &

(see, for example, Middleman [§&]). The energy
equation is

aT 2T du\?
— =k — 36
peu = 3y +n< dy) (36)
assuming that the Péclet number defined by
Pe = peQ/wk 37}

is so large that axial conduction can be neglected.
The boundary conditions on T are

T=T atx:Ol
T
i~=0 aty=0

38
5 (38)
T=T, aty=h
Define the Graetz number
2h 2pcQh
z=— Pe= 39
G L ¢ wkl (39)



Table 1. Comparison of analytical (Richardson) and numerical (Shih and Tsou [7]) values of 6i(¢ =0)

Lévéque solutions for flows of power law fluids

(i =0, 1,2) for various m and Br for flow in a pipe

m Br o (@ =0) 61 (¢ =0) 62(¢ =0)
Analytical Numerical Analytical Numerical Analytical Numerical
0 +1.017448 +1.01745 —0.550000 —0.55000 -0.089413 —0.08541
1 1 +1.017448 +1.01745 —0.550000 —0.55000 +0.466926 +0.45
5 +1.017448 +1.01745 —0.550000 —0.55000 +2.692285 +2.68571
0 +1.119847 +1.11985 —0.600000 —0.60000 —0.089923 —0.08992
1 1 +1.119847 +1.11985 —0.600000 —0.60000 +0.415545 +0.40
5 +1.119847 +1.11985 —0.600000 ~0.60000 +2.437418 +241671
0 +1.281904 +1.28190 —0.700000 —0.70000 —-0.091052 —0.09105
1 +1.281904 +1.28190 —0.700000 —0.70000 +0.350515 +0.35
2 5 +1.281904 +1.28190 —0.700000 —0.70000 +2.116783 +2.10471
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and the Brinkman number
[l*(Q/4Wh2)l/m_ 1Q2 [2(m + 2)]l/m+ 1

Br = T =T, 1 . (40)
Define dimensionless variables
n=y/h {=x/L, 6= (T-TH(T;-T,) (41)
and a modified Graetz number
Gz* = Gz(m+2)/4(m+1). 42)
Then (36) and (38) become
o0 %0
GZ*( m+1)a_é 0 2+Br r,m+1 (43)
and
0=1 ate=0 l
@ =0 aty=0 44)
on
0=0 atn=1 [
respectively. Put
_ 2Gz*\'? 98\
¢ = (l—n)< 5 ) = <§—Gz—) 5)
Then (43) and (44) become
_ _ m+1 - _3__ . 20'
[1-a-gyy 0 ""“21//3( "’a¢ "’a.p)
_(1-¢y) 2°0 2
" 6¢>2 + Br(l —o¢y) (46)

[which is the same as (13) apart from one term on
the RHS] and

9=0 at¢>=0} a)

=1 as¢— .

Expand 6 as in (15), which converges only for ¢ < 1,
that is for Gz > 18(m+ 1)/(m + 2), to obtain

+3(’"+1>¢20’ —0
9”+3<m+1>¢29, _3(m+1)¢6

3m mv+1 ’
7(—2~>¢390 (49)

(48)

1 +1
9;+3<T;—>¢29' —6("’ >¢92

_3m(m+1y o 3m(m+1 24
ST e

_m (m— 1)<ﬂ)¢496_

> > (50)

and so on. The boundary conditions on 8,(i =0, 1, 2,

..) are (19). Note that, as for flow in a pipe, 8, and
6, are independent of Br. Thus, for high enough Gz,
heat generation by viscous dissipation is unimpor-
tant (unless, of course, T, = T,).

Zero-order solution

Note that (48) is identical to (16), and the
boundary conditions are (19) in both cases. Hence
the solution for 6, is given by (20).

First-order solution
Note that the RHS of (49) differs only slightly
from that of (17). So assume that (21) holds, whence

<m+ 1>”3 1
T\ 2 J 51)

m
F=1o
Second-order solution
Expand 8, as in (23). Note that the RHS of the
ordinary differential equation in v, for a channel
differs only slightly from that in v, for a pipe. So
assume that (24) holds, whence

a=0
m+1\"2?
'8_8_46<—2 ) (10m—m?)

m [(m+1\'3 52
V=m<?> (10=m) o
_3m? (m+ 1P
200\ 2 |

¢ is given by (26a).

Note that v, for a channel satisfies the same
ordinary differential equation and boundary con-
ditions as v, for a pipe. Hence the solution for v, is

given by (28).
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Nusselt number

Let H denote the mean heat-transfer coefficient for
heat transfer from the fluid to the channel wall based
on the inlet'temperature difference, so that

L ';T

WLH|T,~T,| = —2wkj e

Jo Oy
Define the mean Nusselt number
Nu = 2Hh/k.

Then it follows that
_ | [6lm+2)]'7 s (m
vo=s| St o ()
9 [[(5/3)])* (10m—m?)
560 [T(4/3)]° [6(m +2)]'

9T(53)  Br .
*ar@n) feimr 2] }

+0(Gz™*?) (55)

where I'(4/3), I'(5/3) and S are given by (32) and
(33).

dx. (53}

y=h

(54)

—1;3

Checks

The results for 6; and 0;(i = 0, 1,2) agree well with
the analytical/numerical (m =1, Br = 0) results of
Mercer [6] as, for example, Table 2 shows.

Table 2. Comparison of analytical (Richardson) and
analytical/numerical (Mercer [6]) values of 8i(¢ = 0)
(i=0,1,2) withm = 1 and Br = 0 for flow in a channel

Oo(d = 0) (¢ =0) 05 =0)
Analytical +1.119847  —0.100000 —0.018393
Analytical/ 15550 _010012  -001832
numerical

4. CONCLUSION

The comparisons made in Sections 2 and 3 of the
results obtained here with those obtained elsewhere
act as checks on the analysis described here. In order
to determine the range of applicability of the results
obtained here, on the other hand, comparison must
be made with the results of a full solution of the
generalized Graetz-Nusselt problem. Comparison
with the (exact) results of Bird [1], Toor [2], Toor
[12], Lyche and Bird [13] and White [14] for flows
in circular pipes indicates that the relative error in
the (asymptotic) results obtained here is of order 0.01
for Gz = 1000, of order 0.1 for Gz > 100 and of order
1 for Gz > 10 as, for example, Table 3 shows. (It
should, however, be noted when making the com-
parison that the results of a full solution of the
generalized Graetz—Nusselt problem are themselves
liable to error for large Gz; the reason for perfor-
ming the analysis described here is, atter all, precisely

S. M. RICHARDSON

Table 3. Comparison of asymptotic (Richard-
son) and exact (White [14]) analytical
values of Nu with m = 1 and Br = 0 for flow

in a pipe
Gz Nu
Asymptotic Exact
10 2.149 4.156
100 6.236 7.155
1000 14.923 15.384

that its results can be obtained both more accurately
and more quickly than the results of a full solution of
the generalized Graetz-Nusselt problem for large
Gz.) The extended Lévéque solutions described here
may, therefore, be regarded as supplements to the
full eigenfunction sum solutions of the generalized
Graetz—Nusselt problem, the former being valid for
Gz > 1000 and the latter valid (or, more strictly,
useful) for Gz < 1000.

It was noted at the appropriate points in sections
2 and 3 that 6, (and 6,) is independent of Br and
hence that, for large enough Gz, heat generation by
viscous dissipation is unimportant (unless, of course,
T, = T,,). This result can be made more precise by a
comparison of the expressions for 6, and 6, which
indicates that heat generation by viscous dissipation
is unimportant and may be neglected unless Br is at
least comparable with [(m+3)Gz]*® for flows in
circular pipes and with [(m+2)Gz]?? for flows in
rectangular channels (assuming, of course, that
Gz = 1000; otherwise, no such statement can be
made).

REFERENCES

1. R. B. Bird, Viscous heat effects in extrusion of molten
plastics, Soc. Plastics Engng J1 11(7), 35-40 (1955).

2. H. L. Toor, Heat generation and conduction in the flow
of a viscous compressible liquid, Trans. Soc. Rheol. 1,
177-190 (1957).

3. M. A. Lévéque, Les lois de la transmission de la chaleur
par convection, Ann. Mines 13(12), 201-299, 305--362,
381-415 (1928).

4. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics
of Polymeric Liquids, Vol. 1, Ist edn, pp. 245-246.
Wiley, New York (1977).

5. J. Newman, Extension of the Lévéque solution, J. Heat
Transfer 91, 177-178 (1969).

6. A. M. Mercer, The growth of the thermal boundary
layer in laminar flow between parallel flat plates, App.
Scient. Res. A8, 357-65 (1959).

7. Y.-P. Shih and J.-D. Tsou, Extended Leveque solutions
for heat transfer to power law fluids in laminar flow in
a pipe, Chem. Engng J1 15, 55-62 (1978).

8. S. Middleman, Fundamentals of Polymer Processing, 1st
edn, pp. 86—89. McGraw-Hill, New York (1977).

9. P. J. Davis, Gamma function and relatéd functions, in
Handbook of Mathematical Functions, edited by M.
Abramowitz and 1. A. Stegun, pp. 253-293. Dover,
New York (1972).

10. L. J. Slater, Confluent hypergeometric functions, ir
Handbook of Mathematical Functions, edited by M.
Abramowitz and 1. A. Stegun, pp. 503-535. Dover,
New York (1972).



Lévéque solutions for flows of power law fluids 1423

i1, H. Jeffreys and B. S. Jeffreys, Merhods of Mathematical  13. B. C. Lyche and R. B. Bird, The Graetz—Nusselt

Physics, 3rd edn, pp. 493-495. Cambridge University problem for a power-law non-newtonian fluid, Chem.
Press, Cambridge (1966). Engng Sci. 6, 35-41 (1956).

12, H. L. Toor, Heat transfer in forced convection with  14. F. M. White, Viscous Fluid Flow, Ist edn, pp. 132138,
internal heat generation, A.L.Ch.E. JI 4, 319-323 (1958). McGraw-Hill, New York (1974).

SOLUTIONS DE LEVEQUE ETENDUES AUX ECOULEMENTS DE FLUIDES EN LOI
PUISSANCE DANS LES TUBES ET LES CANAUX

Résume—On admet qu'un écoulement laminaire, & profil de vitesse établi, existe dans un tube circulaire

ou un canal rectangulaire avec une température de paroi constante. La solution de Lévéque est le terme

d’ordre zéro dans une série puissance de la température pour les grands nombres de Graetz (entrée

thermique} et un fluide newtonien. La solution de Lévéque est étendue de telle sorte que les expressions

analytiques pour les termes d’ordre zéro, un et deux dans la série puissance de la température sont

obtenues pour P'écoulement d’un fluide a loi puissance. L'effet de la génération de chaleur par dissipation
visqueuse est inclus.

ERWEITERTE LEVEQUE-LOSUNGEN FUR STROMUNGEN VON FLUIDEN, DIE DEM
POTENZGESETZ GENUGEN, IN ROHREN UND KANALEN

Zusammenfassung —In einem kreisformigen Rohr oder rechteckigen Kanal mit konstanter Wandtempe-
ratur wird eine laminare Strdmung mit vollkommen ausgebildetem Geschwindigkeitsprofil angenommen.
Die Losung nach Lévéque ist der Term nullter Ordnung in einer Potenzreihenentwicklung der
Temperatur fiir die Stromung einer Newtonschen Flissigkeit mit groBer Graetz-Zahl (thermischer
Einlauf). Die Losung nach Lévéque wird hier in der Form erweitert, da3 die analytischen Ausdriicke fiir
die Terme nullter, erster und zweiter Ordnung in der Potenzreihenentwicklung der Temperatur fiir die
innere Stromung eines Fluides, das dem Potenzgesetz geniigt, hergeleitet werden. Der EinfluB der
Wirmeerzeugung durch viskose Dissipation wird dabei beriicksichtigt.

OBOBUIEHHUE PEMEHHWA NEBEKA HA CJIYYAW TEYEHWUSA CTEMEHHbBIX
KUJAKOCTEH B TPYBAX M KAHAJIAX

Annoraums — [lpeanosaraercss, 410 B Kpyrnoft TpyGe wid npsMOYroabHOM KaHaje C NMOCTOSHHON
TEMIIEPATYPOH CTEHOK HMEET MECTO MAMHMHAPHOC TEUEHHE C NOJMHOCTHIO Da3BHTBIM npodHaeM
cxopocTu. Pewenuem Jlepeka A7 T€UCHHA HBIOTOHOBCKOW XWIKOCTH Npu GOALLINX IHAYEHHSX UHMCI4
T'perua (TennoBoii Ha4a bHLIA Y9aCTOK) SBASETCR WISH HYNEBOTO NOPAAKA B CTENCHHOM Pa3IOKEHNH
TemnepaTyphl. [IposeneHnoe B jJaHnod pabore 06Goblenue pewrenns Jlepexa 3akMO4aETCH B TOM, HTO
4HATUTHYECKHE BHIPAXKCHHA /I 4ICHOB HYJCBOrO. NEPBOTO H BTOPOrc nopsakos no wuciy [ petua
B CTEMEHHOM Da3JOXKEHHH TCMOEPATYPbl HaWACHBI [UTH NOTOKA CTENCHHON XHAKOCTH. YUHTHIBAETCH
ekt BoiaeIeHus TenAa 3a CuéT BAIKON JHCCHIALMH.



