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Abstract-A laminar flow with fully-developed velocity profile is assumed to exist in a circular pipe or 
rectangular channel with constant wall temperature. The LtvZque solution is the zero-order term in a 
power series expansion of temperature for the high Graetz number (thermal entry) flow of a Newtonian 
fluid. The LkvCque solution is extended here in the sense that analytical expressions for the zero-, first- 
and second-order terms in the power series expansion of temperature are derived for the flow of a power 

law fluid. The effect of heat generation by viscous dissipation is included. 
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NOMENCLATURE 

Brinkman number ; 
specific heat capacity ; 

arbitrary constants; 

exponential function; 
Graetz number; 
modified Graetz number ; 
channel half-width; 
mean heat-transfer coefficient 
thermal conductivity; 
pipe or channel length; 
viscosity shear-rate exponent 
Kummer function ; 
Nusselt number; 
pressure drop; 
P&let number; 
volumetric flow rate; 
radial coordinate in pipe; 
pipe radius ; 
(T-U/IT--wI; 
temperature ; 
inlet fluid temperature ; 
wall temperature; 
axial velocity; 
Kummer function; 
channel width; 
axial coordinate in channel ; 
cross-channel coordinate; 
axial coordinate in pipe. 

Greek symbols 

coefficients in expressions for o1 and o2 ; 

gamma function ; 
dimensionless axial coordinate in pipe; 
dimensionless cross-channel coordinate; 
dimensionless temperature; 

i-th order term in power series expansion of 

0; 
first derivative of Qi with respect to 4 ; 
second derivative of oi with respect to 4; 
viscosity ; 
unit shear-rate viscosity ; 

components of e2 ; 

dimensionless axial coordinate in channel; 
density; 

dimensionless radial coordinate in pipe; 
transformed dimensionless cross-duct 
coordinate in pipe or channel; 
dummy variable; 
transformed dimensionless axial coordinate 
in pipe or channel. 

1. INTRODUCTION 

THERE are many practical situations in which a flow, 
though fully-developed from the point of view of the 
velocity field, is undeveloped from the point of view 
of the temperature field: for example, a molten 

polymer flow generally has a fully-developed velocity 
field because its viscosity is high and an undeveloped 
temperature field because its thermal conductivity is 
low. Analysis of such a flow in the simplest possible 
case comprises the Graetz-Nusselt problem, which is 
to determine the developing temperature field in a 
laminar flow of an incompressible Newtonian fluid 
with fully-developed velocity profile in a duct 
(generally, a circular pipe or rectangular channel). 
The inlet fluid temperature is different from the 
constant duct wall temperature, and heat generation 
by viscous dissipation is ignored. All fluid properties 
are assumed to be constant. 

The Graetz-Nusselt problem may be generalized 
(to describe a molten polymer flow more accurately, 
for example) by (i) considering a power law (shear- 
rate dependent viscosity) fluid, of which the New- 
tonian fluid is a special type, and (ii) accounting for 
heat generation by viscous dissipation. 
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Analytical solutions of this (what will henceforth 
be called) generalized Graetz-Nusselt problem can 
be obtained relatively easily for flows in ducts of 
simple geometries (see, for example, Bird [1] and 
Toor [2] for flows in circular pipes). The analytical 
solution for the temperature field is obtained by the 
method of separation of variables and takes the form 
of an infinite sum of eigenfunctions. For long ducts, 
that is for low Graetz number flows, the infinite sum 
converges rapidly. so that accurate estimates of the 
temperature field can be readily obtained. For short 

ducts, that is for high Graetz number flows, however, 
the infinite sum does not converge at all rapidly and, 
in order to obtain accurate estimates of the tempera- 
ture field, an alternative form of the solution must be 
obtained. It is clear that, for high Graetz number 
flows, the temperature field will vary significantly 
from the inlet fluid temperature only in a region 

close to the duct wall and that a boundary layer 
analysis is, therefore, appropriate. Such an analysis 
yields, as a first approximation, the analytical 
Ltvique solution (see, for example, LevCque [3] and 

Bird, Armstrong and Hassager [4] for Livique 
solutions of the Graetz-Nusselt and generalized 
GraetzzNusselt problems, respectively, for flows in 
circular pipes). The Leveque solution of the 
Graetz-Nusselt problem has been extended analyti- 
cally by Newman [5] up to and including second- 

order terms in a power series expansion of tempera- 
ture in inverse one-third powers of local Graetz 
number for flows in circular pipes. The LevCque 
solution is the zero-order term in this power series 

expansion. Mercer [6] has obtained analytically/ 
numerically the analogous solution up to and 
including third-order terms for flows in rectangular 
channels (approximated by flows between parallel 
plates). The Leveque solution of the generalized 
GraetzzNusselt problem has been extended numeri- 
cally by Shih and Tsou [7] up to and including 

fourth-order terms for flows in circular pipes. Here, 

the LivCque solution of the generalized 

GraetzzNusselt problem is extended analytically up 
to and including second-order terms for flows both 
in circular pipes and in rectangular channels (the 
latter being approximated by flows between parallel 
plates). The analysis is described in detail for flows in 
circular pipes in Section 2. The very similar analysis 
for flows in rectangular channels is described 
somewhat more briefly in Section 3. Both analyses 
are discussed in Section 4. 

2. FLOW IN A PIPE 

Let Y denote the radial coordinate and z the axial 
coordinate in a circular pipe of radius R and length 
L. Let u denote the axial velocity, Q the axial 
volumetric flow rate, P the pressure drop, p the 
viscosity, p* the unit shear-rate viscosity and nt the 

viscosity shear-rate exponent (such that 

p = p*ldu/drl”“-‘; m = 1 corresponds to a New- 
tonian fluid). Assume that the ratio L/2R is so large 
that the velocity field is fully-developed. Then it is 

easy to show that 

p+, _ym+l P In 

u= (m+l) 2p*L ( i (1) 

and hence that 

(2) 

(see, for example, Middleman [S]). Then, if p denotes 
the fluid density, c its specific heat capacity, k its 
thermal conductivity and T its temperature, the 

energy equation is 

assuming that the P&let number defined by 

Pe = 2pcQ/xkR (4) 

is so large that axial conduction can be neglected. 

Let q denote the inlet fluid temperature and T, 
denote the constant pipe wall temperature. Then the 
boundary conditions on Tare 

T=T atz=O 1 

?T 
-=O atr=O 
Sr r 
T= T, atr=R.] 

Define the Graetz number (which may be interpreted 
as a ratio of heat convected along the flow to heat 
conducted across it) 

and the Brinkman number (which may be in- 
terpreted as a ratio of heat generated by viscous 
dissipation to heat conducted between the inlet fluid 
flow and the pipe wall) 

Br_p*(Q/2nR”)“m-1QZ [2(m+3)]““+’ 

z2R4k(7;.- T,) 4 
(7) 

Define dimensionless variables 

CT = r/R, < c z/L, H E (T- T,)/( T - T,,,) 

and a modified Graetz number 

cz* = Gz(m + 3)/4(m + 1). 

Then (3) and (5) become 

(8) 

(9) 

de 1 a 80 
Gr*(l-cY+‘)-=;rr 0% +Bra”+‘(lo) 

ai ! ! 

and 

0=1 at[=O_i 

s0 
-=0 atg=O 
C;a 

1 (11) 

H=O ata=l ! 

respectively. Solutions of (10) and (11) are sought 
which are valid for large Gz (and hence Gz*). 
Significant variations in f) are then confined to a 
region close to the pipe wall (a = 1) and the problem 
is, therefore, of boundary layer type. 
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Motivated by the form of the LCvique solution, 

transform the independent variables c and 0 by 
putting 

Then (10) and (11) become 

and 

O=O at+=0 

0=1 as4-+cc: 1 
(14) 

respectively. The boundary condition at?/& = 0 at 
cr=O is irrelevant in a boundary layer 
approximation. 

Expand 0 in a power series in $ 

e(~,~)=eO(~)+~e,(~)+~‘e,(~)+...’ (15) 

Clearly, (15) only converges for tj < 1, that is for 
Gz > 18(m+ l)/(m+3). Note that @,(#J) is precisely 
the dimensionless form of the L&Cque solution for 0 
(see, for example, Bird, Armstrong and Hassager [4]) 
and is valid for small $ and hence large Gz. 
Substitute (15) into (13) and (14), and equate 
coefficients of like powers of $ to obtain 

(16) 

Second-order solution 
Let 

o2 = v1 +Br v2 (23) 

v, satisfies (18) with Q2 = v1 and Br = 0. Assume, by 
analogy with the Newtonian (m = 1) result of 
Newman [5], that 

W#? m 

“1 = r(4/3) j_ [Z’)’ A$ e-“‘dX 

_ 

(18) (24) 

and ‘so on (where ’ denotes d/d4 and ” denotes 
d2/d4’) and 

f&(O) = 81(O) = 0,(O) = = 0. 

f&(m)= l,e,(co)=e,(~)=...=o. 1 
(19) 

Note that 0, and @I are independent of Br. Thus, for 
low enough II/, that is for high enough Gz, heat 
generation by viscous dissipation is unimportant 
(unless, of course, T = T,). 

Zero-order solution 
Integration of (16) is quite straightforward and 

H.M T. 22; IO-C; 

yields, on substitution of the boundary conditions 

(19) 

I 

jm:‘j”‘l 

B. = e_Y’dX r(4/3) 
I 

(20) 
0 

where r( ) denotes the gamma function (see Davis 

C91). 

First-order solution 
Assume, by analogy with the Newtonian (m = 1) 

result of Newman [5], that 

/34 Cc -- s l-(4/3) m+l ” 
e_Y’dX (21) 

iTi 4 

where LY and p are constants yet to be determined. 
The boundary conditions (19) require only that CI 
and p are finite. Substitute (21) into (17), and equate 
coefficients of like powers of 4 to yield 

m m+l Ii3 

“=lo 2 Fj 
(22) 

where a to E are constants yet to be determined. It is 
easy to show that 

where U(,,) is a Kummer function (see Slater [lo]). 
The boundary conditions (19) require that c( to E are 
finite and that 

E = pT($/3[r($y. (26a) 
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Substitute (24) into (IS) using (25), and equate 
coefficients of like powers of 4 to yield 

i (26b) 

r 

9 r(5/3) Br __ Gz - 1 i3 

’ i r(4/3) [6(m +3)]‘j3 1 
3m2 MS-1 4’3 I 

*=%i 2 ! i 1 

v z satisfies (18) with t?, = v2, N, = 8, = 0 and 
Br = 1. The solution of the homogeneous ordinary 
differential equation (18) with 0* = v2 and 
Be = Qi = Br = 0 is 

+c,u(;,;, f+,>l (271 

(see Slater [lo]) where M(, ,) and U(, .) are Kummer 
functions, and ci and c2 are constants. The solution 
of the non-homogeneous ordinary differential equa- 
tion is found by the method of variation of 
parameters (see Jeffreys and Jeffreys [ll]). In- 
corporate the boundary conditions (19) to yield 
finally 

128) 

Riusselt number 
Let H denote the mean heat-transfer coefficient for 

heat transfer from the fluid to the pipe wall based on 
the inlet temperature difference, so that 

2nRLH/7;-T,/ = -2nRk 

Define the mean Nusselt number 

Nu = 2HRIk. 

dz. (29) 

(30) 

Then it follows that 

NM = S C6(m+31'.'3 Gzlj3 _ 

a-(4/3) 

9 [r(S/3)]’ (35 + lOm -m’) Gz_ 1,3 

560 [I-(4/3jj3 [6(nZ3)J”3 

+O(GZ-~'~) 

where l-(4/3) i 0.8929795 

and l-(5/3) + 0.9027453 i 

(see Davis [9] j, and 

(31) 

02) 

S = (T- T,)/Iq- TJ. (33) 

Checks 
The results for Bi and 0; (i = 0,1,2) and Nu agree 

precisely with the analytical (nz = 1, Br = 0) results 
of Newman [5]. The results for H, and 0: (i = 0,1,2) 
agree well with the numerical (arbitrary m and Br) 
results of Shih and Tsou [7] as, for example, Table 1 
shows. 

3. FLOW IN A CHANNEL 

Let y denote the cross-channel coordinate and x 
the axial coordinate in a rectangular channel of half- 
height h, width w and length L. Assume that the 
ratio w/2h is so large that flow in the channel can be 
closely approximated by flow between two parallel 
Aat plates, and that the ratio L/2h is so large that the 
velocity field is fully-developed. Symmetry means 
that attention can be confined to the region 
0 < y < h. Then it is easy to show that 

(34) 

and hence that 

(35) 

(see, for example, Middleman [S]). The energy 
equation is 

2 

pcug=k$+-p 
2 

(36) 

assuming that the P&let number defined by 

is so large that axial conduction can 
The boundary conditions on Tare 

T=T, ats=O i 

T = T, at y = h. 

Define the Graetz number 

(37) 

be neglected. 

(38) 

(39) 
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Table 1. Comparison of analytical (Richardson) and numerical (Shih and Tsou [7]) values of 0:(4 = 0) 
(i = 0, 1,2) for various M and Br for Row in a pipe 

m Br eb@ = 0) e;C#J = 0) e;b$ = 0) 
Analytical Numerical Analytical Numerical Analytical Numerical 

0 + 1.017448 + 1.01745 - 0.550000 - 0.55000 -0.089413 - 0.08941 
t 1 + 1.017448 + 1.01745 - 0.550000 - 0.55000 + 0.466926 + 0.45 

5 + 1.017448 + 1.01745 - 0.550000 - 0.55000 + 2.692285 + 2.68571 

0 +1.119847 + 1.11985 -0.6OOOOO - 0.60000 - 0.089923 - 0.08992 
1 1 + 1.119847 +1.11985 - 0.6OOOOO - 0.60000 +0.415545 f0.40 

5 f1.119847 f1.11985 - 0.600000 - 0.60000 +2.437418 +2.41671 

0 + 1.281904 + 1.28190 - 0.700000 - 0.70000 -0.091052 -0.09105 
1 + 1.281904 + 1.28190 - 0.700000 - 0.70000 +0.350515 +0.35 

2 5 + 1.281904 + 1.28190 - 0.700000 - 0.70000 f2.116783 +2.10471 

and the Brinkman number 

Br ~ P(*(Q/~w~~)““-‘Q~ [2(m+2)1”“+’ 
4W%%( 7y - T,) 4 

(40) 

Define dimensionless variables 

r/ = y/h, 5 = x/L, 0 f (T- T,)/( Ti - T,) (41) 

and a modified Graetz number 

Gz* = Gz(m + 2)/4(m + 1). (42) 

Then (36) and (38) become 

G~*(l-~m+L)~=~+~~~"+l (43) 

and 

8=1 at<=0 

de 
-=0 atg=O I 

a? 
(44) 

0=0 atq=l 

respectively. Put 

Then (43) and (44) become 

[1-(l-~i)“+ll(l-W)dj(-i~+ll~) 

(1 -~II/) 828 
= 2 q + Br(l-4$)“‘+’ 

ti 
(46) 

[which is the same as (13) apart from one term on 
the RHS] and 

8=0 at$=O 

Expand 0 as in (15), which converges only for $ < 1, 

that is for Gz > 18(m + l)/(m + 2), to obtain 

0;+3(y)g2e;-6~)i)gtl, 

=$(“:‘)pii; _~(m:l)&, 

-T(m-1) 
( > 

F 4”&-Br (SO) 

and so on. The boundary conditions on &(i = 0, 1,2, 

. . . ) are (19). Note that, as for flow in a pipe, B,, and 
19, are independent of Br. Thus, for high enough Gz, 
heat generation by viscous dissipation is unimpor- 
tant (unless, of course, 7; = T,). 

Zero-order solution 
Note that (48) is identical to (16), and the 

boundary conditions are (19) in both cases. Hence 
the solution for f& is given by (20). 

First-order solution 
Note that the RHS of (49) differs only slightly 

from that of (17). So assume that (21) holds, whence 

m m+l II3 
CL=- - 

( )I 10 2 

I 

(51) 

p=;. 

Second-order solution 
Expand f12 as in (23). Note that the RHS of the 

ordinary differential equation in v1 for a channel 

differs only slightly from that in v1 for a pipe. So 
assume that (24) holds, whence 

m m+l ‘I3 

( > 
~ (10-m) 

I 

(52) 
y=420 2 

3m2 m+l 4’3 
6== ~ 

( ) 2 

E is given by (26a). 
Note that v2 for a channel satisfies the same 

ordinary differential equation and boundary con- 
ditions as v2 for a pipe. Hence the solution for v2 is 
given by (28). 
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Nusselt number 
Let H denote the mean heat-transfer coefficient for 

heat transfer from the fluid to the channel wall based 

on the inletstemperature difference, so that 

2wLH)7;- T,I = -2wk 

Define the mean Nusselt number 

NM = 2Hhlk. 

d.u. 

Then it follows that 

Nu=S 
IIfW + 2)1”3 GzI,3 _ m 

2.r(J/3) 0 3 
9 [U5/3)12 (lOm-m2) Gz-‘/3 

560 [lY(4/3)13 [6(~n+2)]“~ 

9 l-(5/3) Br 

+j r(4/3) [6(~n+2)]“~ 
Gc- 1;3 1 

(53) 

(54) 

(55) 

where I-(4/3), r(5/3) and S are given by (32) and 

(33). 

Checks 
The results for 8, and &(i = 0,1,2) agree well with 

the analytical/numerical (m = 1, Br = 0) results of 
Mercer [6] as, for example, Table 2 shows. 

Table 2. Comparison of analytical (Richardson) and 
analytical/numerical (Mercer [6]) values of fJ:($ = 0) 

(i = 0, 1,2) with m = 1 and Br = 0 for flow in a channel 

w#J = 0) e; (4 = 0) e;(4 = 0) 

Analytical +1.119847 -0.100000 - 0.018393 REFERENCES 
Analytical/ 
numerical 

+ 1.12250 -0.10012 - 0.01832 

4. CONCLUSION 

The comparisons made in Sections 2 and 3 of the 
results obtained here with those obtained elsewhere 
act as checks on the analysis described here. In order 
to determine the range of applicability of the results 
obtained here, on the other hand, comparison must 
be made with the results of a full solution of the 
generalized Graetz-Nusselt problem. Comparison 
with the (exact) results of Bird [l], Toor [2], Toor 
[12], Lyche and Bird [13] and White [14] for flows 
in circular pipes indicates that the relative error in 
the (asymptotic) results obtained here is of order 0.01 
for Gz > 1000, of order 0.1 for Gz $ 100 and of order 
1 for Gz 2 10 as, for example, Table 3 shows. (It 
should, however, be noted when making the com- 
parison that the results of a full solution of the 
generalized Graetz-Nusselt problem are themselves 
liable to error for large Gz; the reason for perfor- 
ming the analysis described here is, after all, precisely 

Table 3. Comparison of asymptotic (Richard- 
son) and exact (White [14]) analytical 
values of Nu with m = 1 and Br = 0 for flow 

in a pipe 

GZ Nu 
Asymptotic Exact 

IO 2.149 4.156 
100 6.236 7.155 

1000 14.923 15.384 

that its results can be obtained both more accurately 
and more quickly than the results of a full solution of 
the generalized Graetz-Nusselt problem for large 

Gz.) The extended Levique solutions described here 

may, therefore, be regarded as supplements to the 
full eigenfunction sum solutions of the generalized 
Graetz-Nusselt problem, the former being valid for 
Gz > 1000 and the latter valid (or, more strictly, 
useful) for Gz 8 1000. 

It was noted at the appropriate points in sections 
2 and 3 that 0, (and 0,) is independent of Br and 
hence that, for large enough Gz, heat generation by 
viscous dissipation is unimportant (unless, of course, 
T = T,). This result can be made more precise by a 
comparison of the expressions for 0,, and Q2 which 
indicates that heat generation by viscous dissipation 
is unimportant and may be neglected unless Br is at 
least comparable with [(m+3)G~]“~ for flows in 
circular pipes and with [(m+2)Gz]2/3 for flows in 
rectangular channels (assuming, of course, that 
Gz > 1000; otherwise, no such statement can be 
made). 
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SOLUTIONS DE LEVEQUE ETENDUES AUX ECOULEMENTS DE FLUIDES EN LOI 
PUISSANCE DANS LES TUBES ET LES CANAUX 

R&.sume&On admet qu’un ecoulement faminaire, B profil de vitesse etabli, existe dans un tube circuiaire 
ou un canal rectangulaire aver une temperature de paroi constante. La solution de L&&pie est le terme 
d’ordre zero dans une serie puissance de la temperature pour les grands nombres de Graetz (entree 
thermique) et un tluide newtonien. La solution de Levtque est &endue de telle sorte que les expressions 
analytiqu~ pour les termes d'ordre z&o, un et deux dans la strie puissance de la tempirature sont 

obtenues pour ~~oulement d’un Ruide 2 loipuissance. L'effet de la generation de chaleur par dissipation 

ERWEITERTE LEVEQUE-LGSUNGEN FUR STRGMUNGEN VON FLUIDEN, DIE DEM 
POTENZGESETZ GENUGEN, IN ROHREN UND KAN;ILEN 

Zu~mmenfa~ung-In einem kreisf~rmigen Rohr oder r~hte~kigcn Kanal mit konstanter Wandtempe- 
ratur wird eine laminare Stromung mit vollkommen ausgebildetem Ges~hwindigkeitsprofil angenommen. 
Die Losung nach Leveque ist der Term nullter Ordnung in einer Potenzreihenentwicklung der 
Temperatur fiir die Stromung einer Newtonschen Fliissigkeit mit grol3er Graetz-Zahl (thermischer 
Einlauf). Die Losung nach LevCque wird hier in der Form erweitert, dab die analytischen Ausdriicke fir 
die Terme nullter, erster und zweiter Ordnung in der PotenzreiheneRtw~cklung der Temperatur fiir die 
innere Str~mung eines Fluides, das dem Potenzgesetz geniigt, hergeleitet werden. Der Ein~u~ der 

W~~eerzeugung durch viskose Dissipation wird dabei beriicksichtigt. 

OEOIG~EHME PEUIEHHII AEBEKA HA CflYLlAii TELIEHMII CTEHEHHbIX 
?KHflKOCTEti B TPYGAX M KAHAnAX 

.bmoTauwn- npe~nO,qaraeTC~. YTO B KpyrjfOE fpy6e f4JH np~MOyrO~bH0~ KaHaAe C nOCTO~HH0~ 

Te~nepaTypo~ ciettox mreer MecTo ,~aM~HapHoe resefiee c rfo.frfiocTbfo ~3~~Tbf~ npo~~ne~ 

CKOpoCTU. kmeHWM neBeKa ,%Vf TeYeHMR HbKfTOHOBCKOfi XwKoCTM Ilpff 6OjlbutHX 3HaYeHNIIX YHCJIB 

t-derfla (TenJfOBOii HaVa;lbHblf? yYaCTOK) RBJReTCR WfeH HyJfeBOrO IfOpffRKa a CTeneHHOM jEi3AOXeHHif 

TeMnepaTypbf. npoaeaelrfioe a2amiofi pabore 0606meffme peufeffun JkBeKa 3aKnfoO'faeTcR a TOM. wo 

affanfrrwfecK~e ebrpa~effffa .rl.wf Y~~~HoB H~E~BO~O. nepeoro H sTopor nopaaKoe no wfc~ly FpeTua 

B CTeneHHOM pa3EOXeHEi% TeMEfepaTypbI HafkIeHbf ilJft)l ItOTOKa CfefleHffOir XWfKOCTH. Y'fiTbiBaeTCa 


